Functions
Heating:
In heating mode, the heat pump absorbs low-temperature heat energy from the external environment, such as air, water, or soil.
By compressing the working fluid, raising its temperature, and then releasing high-temperature heat energy, the heat pump elevates the indoor temperature in a building or contributes to a hot water system.
This makes the heat pump an efficient heating system, particularly in warmer climates where low-temperature heat can be extracted from the air or water.
Cooling:
In cooling mode, the operation of the heat pump is reversed, absorbing high-temperature heat energy from the indoor environment.
Through the expansion and evaporation of the working fluid, high-temperature heat energy is absorbed and carried away, then released into the external environment.
This process lowers the indoor temperature, providing air conditioning. The cooling function enables the heat pump to be a year-round device, offering cooling services in the summer.
Hot Water Supply:
The heat pump can also be used for producing hot water, suitable for residential hot water supply or commercial hot water systems.
In this mode, the heat pump absorbs heat energy from the environment, uses it to heat water, and then delivers the heated water to places requiring hot water, such as bathrooms or kitchens.
This functionality makes the heat pump an environmentally friendly and efficient solution for hot water supply, replacing traditional water heaters.
Advantage
Utilization of Renewable Energy:
The system harnesses solar energy through photovoltaic panels, converting it into electrical energy. This means that the primary energy source for the system is renewable and pollution-free solar energy, contributing to a reduction in dependence on finite resources and lowering greenhouse gas emissions.
Efficient Energy Utilization:
By employing heat pump technology to extract low-temperature heat energy from the environment and upgrading it to high-temperature heat energy for heating, cooling, or hot water, the system achieves relatively high energy utilization efficiency.
Energy Saving and Reduced Consumption:
Compared to traditional heating, air conditioning, and water heating systems, photovoltaic solar thermal pump systems are typically more energy-efficient. The system can flexibly switch between heating and cooling modes, providing the same or higher levels of comfort with lower energy consumption.
Year-Round Performance:
The system has year-round performance capabilities, providing heating during the colder seasons and cooling during the warmer seasons. This makes the photovoltaic solar thermal pump system a versatile, year-round energy solution.
Lower Energy Bills:
Sfruttando l’energia solare e combinandola con la tecnologia della pompa di calore, il sistema può ridurre significativamente le bollette energetiche. L'assorbimento naturale dell'energia solare consente alla pompa di calore di fornire comfort riducendo la dipendenza dalla rete elettrica convenzionale.
Ecologico:
L’uso di un sistema di pompe solari termiche fotovoltaiche riduce la domanda di combustibili fossili, contribuendo a ridurre le emissioni di gas serra, mitigando gli impatti dei cambiamenti climatici e contribuendo ad un approccio più rispettoso dell’ambiente.
Sviluppo sostenibile:
Adottare un sistema di pompaggio solare termico fotovoltaico si allinea ai principi dello sviluppo sostenibile, guidando la società verso un futuro più sostenibile dal punto di vista energetico.
Tabella Collegamenti Consigliati Pannelli Solari
La quantità di pannelli solari per ciascuna pompa di calore di potenza
1. I dati di cui sopra sono solo di riferimento, i dati specifici sono soggetti al prodotto reale
2. Nel migliore dei casi, l'energia elettrica generata dai pannelli fotovoltaici copre il 90% del consumo delle pompe di calore
3. Ingresso massimo DC 400 V monofase / Ingresso minimo DC 200 V / Ingresso massimo DC 600 V trifase / Ingresso minimo DC 300 V
Parametri della pompa di calore
Pompa di calore DCInverter | FLM-AH-002HC32 | FLM-AH-003HC32 | FLM-AH-005HC32S | FLM-AH-006HC32S | |
Capacità di riscaldamento (A7C/W35C) | In | 8200 | 11000 | 16500 | 20000 |
Potenza in ingresso (A7C/W35C) | In | 1880 | 2600 | 3850 | 4650 |
Impostazione della temperatura nominale dell'acqua | °C | ACS: 45℃ / Riscaldamento: 35℃ / Raffreddamento: 18℃ | |||
Voltaggio | v/hz | 220V-240V - 50Hz- 1N | 380V-415V~50Hz~3N | ||
Temperatura massima di uscita dell'acqua | °C | 60 ℃ | |||
Refrigerazione | R32 | R32 | R32 | R32 | |
Modalità di controllo | Riscaldamento / Raffrescamento / ACS / Riscaldamento+ACS/ Raffrescamento+ACS | ||||
Compressore | Compressore DC-Inverter Panasonic | ||||
Temperatura ambiente di funzionamento | (-25℃ -- 43℃) | (-25℃ -- 43℃) | (-25℃ -- 43℃) | (-25℃ -- 43℃) |